########################## Discrete Fourier transform ########################## We consider the discrete counterpart of the relation discussed in :ref:`the previous part `: .. math:: F_k = \frac{1}{L} \int_{0}^{L} f \left( x \right) \twiddle{- 2 \pi}{k x}{L} dx. In particular, we describe the continuous function :math:`f \left( x \right)` as the superposition of :math:`N` Dirac delta functions having non-zero value at :math:`x_n \in \left[ 0, L \right)`, yielding .. math:: F_k & \approx \frac{1}{L} \int_{0}^{L} \sum_{n = 0}^{N - 1} f_n \delta \left( x - x_n \right) \twiddle{- 2 \pi}{k x}{L} dx & = \sum_{n = 0}^{N - 1} f_n \twiddle{- 2 \pi}{k x_n}{L}. It should be noted that, the integral and the summation are interchanged, which needs careful consideration but is accepted anyway here. Although the sampling points :math:`x_n` can be arbitrary chosen, we let them .. math:: x_n = n \frac{ L }{ N }, leading to .. math:: F_k = \sum_{n = 0}^{N - 1} f_n \twiddle{- 2 \pi}{k n}{N}. Correspondingly, we notice .. math:: \frac{1}{N} \sum_{k = 0}^{N - 1} F_k \twiddle{2 \pi}{k n}{N} & = \sum_{k = 0}^{N - 1} \left\{ \sum_{m = 0}^{N - 1} f_m \twiddle{- 2 \pi}{k m}{N} \right\} \twiddle{2 \pi}{k n}{N} & = \frac{1}{N} \sum_{m = 0}^{N - 1} \left\{ f_m \sum_{k = 0}^{N - 1} \twiddle{2 \pi}{k \left( n - m \right)}{N} \right\} & = \frac{1}{N} \sum_{m = 0}^{N - 1} f_m N \delta_{nm} & = f_n, where we use an identity with :math:`n \in \mathbb{Z}`: .. math:: \sum_{k = 0}^{N - 1} \twiddle{2 \pi}{k n}{N} = N \delta_{n0}. .. derivation_disclosure:: For :math:`n = 0` (or in general :math:`n = N m` with :math:`m \in \mathbb{Z}`), it is obvious that .. math:: \sum_{k = 0}^{N - 1} 1 = N. Otherwise, we have .. math:: \sum_{k = 0}^{N - 1} \twiddle{2 \pi}{n k}{N} = \frac{ 1 - \exp \left( 2 \pi n I \right) }{ 1 - \twiddle{2 \pi}{n}{N} } = 0, where we adopt the formula to calculate the sum of geometric progression. In summary, the discrete Fourier transform and its inverse transform are given by: .. math:: F_k & \equiv \sum_{n = 0}^{N - 1} f_n \twiddle{- 2 \pi}{k n}{N} \equiv \dft{k}{N}{f_0}{f_1}{f_{N - 1}}, f_n & \equiv \frac{1}{N} \sum_{k = 0}^{N - 1} F_k \twiddle{2 \pi}{k n}{N} \equiv \idft{n}{N}{F_0}{F_1}{F_{N - 1}}, where :math:`\seq{k}{0}{1}{N - 1}` and :math:`\seq{n}{0}{1}{N - 1}`, respectively. Note that both transforms are linear operators yielding linear maps: :math:`\mathbb{C}^N \rightarrow \mathbb{C}^N`.