Discrete sine transform
As we did to derive the discrete cosine transform, we consider a shifted discrete Fourier transform of \(2 N\) real numbers.
Here, instead of the even symmetry, we consider a signal satisfying the odd symmetry:
\[x_{2 N - 1 - n}
=
-
x_n\]
under \(\seq{n}{0}{1}{2 N - 1}\).
Due to
\[\sum_{n = N}^{2 N - 1}
x_n
\twiddle{- 2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
=
-
\sum_{n = 0}^{N - 1}
x_n
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N},\]
Derivation
With \(m = 2 N - 1 - n\), we have
\[ \begin{align}\begin{aligned}\sum_{m = N - 1}^{0}
x_{2 N - 1 - m}
\twiddle{- 2 \pi}{\left( 2 N - 1 - m + \frac{1}{2} \right) k}{2 N}
&
=
-
\sum_{n = 0}^{N - 1}
x_n
\exp \left( - 2 \pi k I \right)
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}\\&
=
-
\sum_{n = 0}^{N - 1}
x_n
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}.\end{aligned}\end{align} \]
we obtain
\[X_k
=
-
2
I
\sum_{n = 0}^{N - 1}
x_n
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}.\]
It is clear that \(X_k \in \mathbb{I}\).
Note that
\[X_{2 N - k}
=
X_k,\]
Derivation
\[ \begin{align}\begin{aligned}X_{2 N - k}
&
=
-
2
I
\sum_{n = 0}^{N - 1}
x_n
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) \left( 2 N - k \right)}{2 N}\\&
=
-
2
I
\sum_{n = 0}^{N - 1}
x_n
\sin
\left(
\pi \left( 2 n + 1 \right)
-
2 \pi \frac{\left( n + \frac{1}{2} \right) k}{2 N}
\right)\\&
=
-
2
I
\sum_{n = 0}^{N - 1}
x_n
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
\,\,
\left(
\because \cos \left\{ \pi \left( 2 n + 1 \right) \right\} = -1
\right)\\&
=
X_k.\end{aligned}\end{align} \]
and thus it is sufficient to consider \(\seq{k}{0}{1}{N}\).
Additionally we easily see that \(X_0 \equiv 0\).
The inverse transform can be found as follows; due to
\[\sum_{k = N}^{2 N - 1}
X_k
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
=
-
\sum_{k = 1}^{N - 1}
X_k
\twiddle{- 2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
+
\left( -1 \right)^n
I
X_N,\]
Derivation
\[ \begin{align}\begin{aligned}\sum_{k = N}^{2 N - 1}
X_k
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
&
=
\sum_{k = N}^{2 N - 1}
X_{2 N - k}
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}\\&
=
\sum_{l = N}^{1}
X_l
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) \left( 2 N - l \right)}{2 N}
\,\,
\left( l \equiv 2 N - k \right)\\&
=
\sum_{k = 1}^{N}
X_k
\exp \left\{ \pi \left( 2 n + 1 \right) I \right\}
\twiddle{- 2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}\\&
=
-
\sum_{k = 1}^{N}
X_k
\twiddle{- 2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
\,\,
\left( \because \exp \left\{ \pi \left( 2 n + 1 \right) I \right\} = -1 \right)\\&
=
-
\sum_{k = 1}^{N - 1}
X_k
\twiddle{- 2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
+
\left( -1 \right)^n
I
X_N.\end{aligned}\end{align} \]
we obtain
\[ \begin{align}\begin{aligned}x_n
&
=
\frac{1}{2 N}
\left\{
\sum_{k = 0}^{N - 1}
X_k
\twiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
-
\sum_{k = 1}^{N - 1}
X_k
\twiddle{- 2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
+
\left( -1 \right)^n
I
X_N
\right\}\\&
=
\frac{I}{N}
\left\{
\sum_{k = 1}^{N - 1}
X_k
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
+
\left( - 1 \right)^n
\frac{X_N}{2}
\right\}.\end{aligned}\end{align} \]
By substituting \(X_k\) with \(- I X_k\), we find the forward transform:
\[X_k
=
2
\sum_{n = 0}^{N - 1}
x_n
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}\]
and the backward transform:
\[x_n
=
\frac{1}{N}
\left\{
\sum_{k = 1}^{N - 1}
X_k
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) k}{2 N}
+
\left( - 1 \right)^n
\frac{X_N}{2}
\right\}.\]
To eliminate the case of \(k = 0\) (\(X_0 \equiv 0\)), we shift \(k\) and finally we obtain the discrete sine transform of type II and type III:
\[X_k
=
2
\sum_{n = 0}^{N - 1}
x_n
\stwiddle{
2 \pi
}{
\left( n + \frac{1}{2} \right)
\left( k + 1 \right)
}{
2 N
}\]
for \(\seq{k}{0}{1}{N - 1}\), and
\[x_n
=
\frac{1}{N}
\left\{
\sum_{k = 0}^{N - 2}
X_k
\stwiddle{2 \pi}{\left( n + \frac{1}{2} \right) \left( k + 1 \right)}{2 N}
+
\left( - 1 \right)^n
\frac{X_{N - 1}}{2}
\right\}\]
for \(\seq{n}{0}{1}{N - 1}\), respectively.
Note that both transforms are \(\mathbb{R}^N \rightarrow \mathbb{R}^N\).