######### Equations ######### The incompressible Navier-Stokes equations in three-dimensional cylindrical coordinates are derived `here `_. Due to the azimuthal homogeneity: .. math:: & \vel{2} \equiv 0, & \pder{q}{\gcs{2}} \equiv 0, the equations can be further simplified, which are given below. **************************** Incompressibility constraint **************************** .. math:: \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \vel{1} \right) + \frac{1}{J} \pder{}{\gcs{3}} \left( \frac{J}{\sfact{3}} \vel{3} \right) = 0. This is enforced by the SMAC method. ************ Mass balance ************ .. math:: \pder{\density}{t} + \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \density \vel{1} \right) + \frac{1}{J} \pder{}{\gcs{3}} \left( \frac{J}{\sfact{3}} \density \vel{3} \right) = 0. This is solved by means of the volume-of-fluid method. **************** Momentum balance **************** .. math:: \momtemp{1} = & \momadv{1}{1} \momadv{3}{1} & \mompre{1} & \momdif{1}{1} \momdif{3}{1} & \momdifx, .. math:: \momtemp{3} = & \momadv{1}{3} \momadv{3}{3} & \mompre{3} & \momdif{1}{3} \momdif{3}{3}. This is solved by the energy-conserving scheme. ******************* Shear-stress tensor ******************* The shear-stress tensor for Newtonian liquids is defined as .. math:: \sst{i}{j} \equiv \viscosity \vgt{i}{j} + \viscosity \vgt{j}{i}, where :math:`\vgt{i}{j}` is a second-order tensor representing the gradient of velocity vector: .. math:: \sum_i \sum_j \vec{e}_i \otimes \vec{e}_j \vgt{i}{j}. The components are .. math:: \begin{pmatrix} \vgt{1}{1} & \vgt{2}{1} & \vgt{3}{1} \\ \vgt{1}{2} & \vgt{2}{2} & \vgt{3}{2} \\ \vgt{1}{3} & \vgt{2}{3} & \vgt{3}{3} \\ \end{pmatrix} = \begin{pmatrix} \frac{1}{\sfact{1}} \pder{\vel{1}}{\gcs{1}} & 0 & \frac{1}{\sfact{3}} \pder{\vel{1}}{\gcs{3}} \\ 0 & \frac{1}{J} \pder{}{\gcs{1}} \left( \frac{J}{\sfact{1}} \right) \vel{1} & 0 \\ \frac{1}{\sfact{1}} \pder{\vel{3}}{\gcs{1}} & 0 & \frac{1}{\sfact{3}} \pder{\vel{3}}{\gcs{3}} \end{pmatrix}. The dynamic viscosity is computed using the cell-faced volume-of-fluid value.