Equations¶
The incompressible Navier-Stokes equations in three-dimensional cylindrical coordinates are derived here.
Due to the azimuthal homogeneity:
\[ \begin{align}\begin{aligned}&
\vel{2}
\equiv
0,\\&
\pder{q}{\gcs{2}}
\equiv
0,\end{aligned}\end{align} \]
the equations can be further simplified, which are given below.
Incompressibility constraint¶
\[\frac{1}{J}
\pder{}{\gcs{1}}
\left(
\frac{J}{\sfact{1}} \vel{1}
\right)
+
\frac{1}{J}
\pder{}{\gcs{3}}
\left(
\frac{J}{\sfact{3}} \vel{3}
\right)
=
0.\]
This is enforced by the SMAC method.
Mass balance¶
\[\pder{\density}{t}
+
\frac{1}{J}
\pder{}{\gcs{1}}
\left(
\frac{J}{\sfact{1}}
\density
\vel{1}
\right)
+
\frac{1}{J}
\pder{}{\gcs{3}}
\left(
\frac{J}{\sfact{3}}
\density
\vel{3}
\right)
=
0.\]
This is solved by means of the volume-of-fluid method.
Momentum balance¶
\[ \begin{align}\begin{aligned}\momtemp{1}
=
&
\momadv{1}{1}
\momadv{3}{1}\\&
\mompre{1}\\&
\momdif{1}{1}
\momdif{3}{1}\\&
\momdifx,\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\momtemp{3}
=
&
\momadv{1}{3}
\momadv{3}{3}\\&
\mompre{3}\\&
\momdif{1}{3}
\momdif{3}{3}.\end{aligned}\end{align} \]
This is solved by the energy-conserving scheme.
Shear-stress tensor¶
The shear-stress tensor for Newtonian liquids is defined as
\[\sst{i}{j}
\equiv
\viscosity
\vgt{i}{j}
+
\viscosity
\vgt{j}{i},\]
where \(\vgt{i}{j}\) is a second-order tensor representing the gradient of velocity vector:
\[\sum_i
\sum_j
\vec{e}_i
\otimes
\vec{e}_j
\vgt{i}{j}.\]
The components are
\[\begin{split}\begin{pmatrix}
\vgt{1}{1} & \vgt{2}{1} & \vgt{3}{1} \\
\vgt{1}{2} & \vgt{2}{2} & \vgt{3}{2} \\
\vgt{1}{3} & \vgt{2}{3} & \vgt{3}{3} \\
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{\sfact{1}}
\pder{\vel{1}}{\gcs{1}}
&
0
&
\frac{1}{\sfact{3}}
\pder{\vel{1}}{\gcs{3}}
\\
0
&
\frac{1}{J}
\pder{}{\gcs{1}}
\left(
\frac{J}{\sfact{1}}
\right)
\vel{1}
&
0
\\
\frac{1}{\sfact{1}}
\pder{\vel{3}}{\gcs{1}}
&
0
&
\frac{1}{\sfact{3}}
\pder{\vel{3}}{\gcs{3}}
\end{pmatrix}.\end{split}\]
The dynamic viscosity is computed using the cell-faced volume-of-fluid value.